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AWS using utilizing machine learning to classify clouds from satellite data 

for process-oriented climate model assessment implementing for cloud 

computing 

 
 

 

Abstract: 

Road Clouds play a key role in regulating climate change but are 

difficult to simulate within Earth system models (ESMs). Improving 

the representation of clouds is one of the key tasks towards more 

robust climate change projections. This study introduces a new 

machine-learning based framework relying on satellite observations 

to improve understanding of the representation of clouds and their 

relevant processes in climate models. The proposed method is 

capable of assigning distributions of established cloud types to 

coarse data. It facilitates a more objective evaluation of clouds in 

ESMs and improves the consistency of cloud process analysis. The 

method is built on satellite data from the MODIS instrument labelled 

by deep neural networks with cloud types defined by the World 

Meteorological Organization (WMO), using cloud type labels from 

CloudSat as ground truth. The method is applicable to datasets with 

information about physical cloud variables comparable to MODIS 

satellite data and at sufficiently high temporal resolution.We 

recommend outputting crucial variables required by our method for 

future ESM data evaluation. This will enable the use of labelled 

satellite data for a more systematic evaluation of clouds in climate 

models. Keywords: Cloud , Cloud Computing , Machine Learning , 

Data Mining , Support Vector Machine ( SVM) , Logistic 

Regression. 

Keywords:Cloud,CloudComputing,MachineLearning,Data Mining , 
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1.INTRODUCTION 

EARTH system models (ESMs, also referred to as climate models) are 

important tools not only to improve our understanding of present-day 

climate but also to project climate change under different plausible 

future scenarios. For this, climate models have been continuously 

improved and extended over the last decades from relatively simple 

atmosphere-only models to complex state-of-the-art ESMs including 

many processes such as the biogeochemical cycle, e.g. those 

participating in the latest (sixth) phase of the Coupled Model 

Intercomparison Project (CMIP6, [1]).  

This increasing complexity of models is needed to represent key 

feedbacks that affect climate change, but also requires innovative and 

comprehensive model evaluation and analysis approaches to assess the 

performance of these models [2], given the increase in the number of 

tuneable parameters in the models. In particular, the simulation of 

clouds and their interactions with the climate system remain major 

challenges for ESMs [3]. As a consequence, cloud feedback 

mechanisms such as the shortwave radiative effect of low clouds, 

which are critical for long-term climate projections, have proven to be 

hard to quantify confidently [4]–[6]. 

 

 

 

 

 

Furthermore, the representation of clouds has been identified as one of 

the primary sources of intermodel spread in state-of-the-art ESMs [7]. 

An improved representation of cloud processes is therefore an essential 

component in addressing these issues [8]–[10].  

2. LITERATURE SURVEY 

A.“Assessment of CMIP6 Cloud Fraction and Comparison with 

Satellite Observations,” The seasonal and regional variations of 

cloud fractions are compared across two generations of global 

climate model ensembles, specifically, the Coupled Model 

Intercomparison Project-5 (CMIP5) and CMIP6, through the 

historical period in terms of skills and multimodel agreement. We 

find a wider spread of historical cloud fraction changes in the CMIP6 

than was simulated by the CMIP5. The global mean cloud fractions 

of CMIP6 increased by about 4.5% from the CMIP5, which 

attributed to greater changes in the northern hemisphere than in the 

southern hemisphere. The CMIP6 cloud fractions in recent years are 

validated with the CALIPSO_CLOUSAT observations to 

understand the cloud fraction uncertainties in CMIP6 models. The 

CMIP6 ensemble mean of cloud fractions compares well with the 

observations with a mean difference of 0.5% in lower altitudes. The 

CMIP6 cloud fractions are higher than the observations at higher 

latitudes in both hemispheres in the upper troposphere, and the biases 

vary from one model to another. The spatial difference between the 

ensemble and observations is further revealed over the tropics: where 

the model displays a 3% higher bias. In addition, we observed a 

significant trend occuring in the northern hemisphere since the mid-

20th century using calculations of cloud fraction trends based on the 

robust regression technique. Finally, we reduce the differences 

between the model and observations by applying a simple regression 

technique. The results exemplify that the model and modified 

observations compare well, with the root mean square value 

decreased by nearly 28%, and the correlation increased 

significantly.“Observational constraints on low cloud feedback 

reduce uncertainty of climate sensitivity,” Marine low clouds 

strongly cool the planet. How this cooling effect will respond to 

climate change is a leading source of uncertainty in climate 

sensitivity, the planetary warming resulting from CO2 doubling. 

Here, we observationally constrain this low cloud feedback at a near-

global scale. Satellite observations are used to estimate the 

sensitivity of low clouds to interannual meteorological perturbations. 

Combined with model predictions of meteorological changes under 

greenhouse warming, this permits quantification of spatially 

resolved cloud feedbacks. We predict positive feedbacks from 

midlatitude low clouds and eastern ocean stratocumulus, nearly 

unchanged trade 6 cumulus and a near-global marine low cloud 

feedback of 0.19 ± 0.12 W m−2 K−1 (90% confidence). These 

constraints imply a moderate climate sensitivity (~3 K). Despite 

improved midlatitude cloud feedback simulation by several current-

generation climate models, their erroneously positive trade cumulus 

feedbacks produce unrealistically high climate sensitivities. 

Conversely, models simulating erroneously weak low cloud 

feedbacks produce unrealistically low climate sensitivities.“The 

Cloud Feedback Model Intercomparison Project (CFMIP) 
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contribution to CMIP6,” The primary objective of CFMIP is to 

inform future assessments of cloud feedbacks through improved 

understanding of cloud–climate feedback mechanisms and better 

evaluation of cloud processes and cloud feedbacks in climate 

models. However, the CFMIP approach is also increasingly being 

used to understand other aspects of climate change, and so a second 

objective has now been introduced, to improve understanding of 

circulation, regional-scale precipitation, and non-linear changes. 

CFMIP is supporting ongoing model inter-comparison activities by 

coordinating a hierarchy of targeted experiments for CMIP6, along 

with a set of cloud-related output diagnostics. CFMIP contributes 

primarily to addressing the CMIP6 questions “How does the Earth 

system respond to forcing?” and “What are the origins and 

consequences of systematic model biases?” and supports the 

activities of the WCRP Grand Challenge on Clouds, Circulation and 

Climate Sensitivity. 

  

3. PROPOSED METHODOLOGY 

We provide a novel method for evaluating ESMs that aims to alleviate 

some of the perceived drawbacks of using traditional observational 

data while also making process-oriented cloud assessment in climate 

models easier. We make advantage of preexisting information about 

the features of various cloud classes, which are derived from the 

World Meteorological Organization's (WMO) taxonomy of cloud 

types. Utilizing this earlier information, cloud operations may be 

emphasized for further analysis. Our strategy applies machine 

learningbased cloud categorization techniques recently developed for 

satellite data to climate models. Although machine learning-based 

cloud categorization is not a novel concept [e.g. 16], it has only 

recently been practical for largescale applications because of the rise 

in processing power that is now accessible and the fact that the 

various approaches have varied characteristics. The supervised vs 

unsupervised nature of categorization techniques is a key 

differentiator. Whereas the latter seeks to automatically discover 

unique new classes, the former depends on already given classes. 

While unsupervised approaches provide the user more flexibility over 

the composition of the classes, supervised classification makes the 

assumption that the classes allocated to them are appropriate for the 

task at hand. As a consequence, supervised approaches need a set of 

labeled data yet enable interpretation of the final findings without the 

need for extra analytic stages. Unsupervised approaches are better if 

finding as different classes as feasible is the aim, or if there are no 

accessible previously tagged data. 

One of the WMO’s key functions is to monitor and analyze global 

climate trends, working closely with organizations such as the 

Intergovernmental Panel on Climate Change (IPCC) to assess the 

impact of climate change. It also provides scientific data that 

supports international agreements like the Paris Agreement, which 

aims to limit global warming. In addition, the WMO plays a vital 

role in water resource management, aviation and maritime safety, 

and improving meteorological capabilities in developing countries. 

Through its reports and initiatives, the WMO continues to be at the 

forefront of addressing climate-related challenges and ensuring a 

safer, more resilient world.  

Advantages: Machine learning models can learn complex patterns 

in satellite imagery, leading to more accurate cloud classification 

compared to traditional methods. Automated classification speeds up 

the process, allowing analysis of large volumes of satellite data in a 

relatively shorter time frame. Machine learning enables the analysis 

of high-resolution satellite imagery, capturing detailed cloud features 

that might be missed in manual analysis.   Accurate classification 

provides detailed information about cloud types, their spatial 

distribution, and temporal variations, enriching the understanding of 

cloud behavior and its impact on climate dynamics. 

 

 

4. EXPERIMENTAL ANALYSIS 

              

Fig: 6.1 Cloud Climate Prediction Using Machine Learning  

The web-based application "Cloud Climate Prediction Using Machine 

Learning" is designed to predict cloud climate conditions using 

machine learning models. Running on a local server (127.0.0.1:5000), 

the interface is simple and user-friendly, allowing users to select 

different climate factors from a dropdown menu.This system could be 

valuable for meteorologists, environmental researchers, and 

individuals interested in weather forecasting. By analyzing historical 

data and real-time inputs, the model likely predicts future trends, 

helping users make informed decisions. 

               
Fig: 6.2 Cloud Climate Prediction for Temperature  

In this section, users are prompted to input key atmospheric parameters 

that influence precipitation. These include Current temperature, 

Humidity, and Wind Speed. Once the required values are entered into 

the respective fields, users can click the "Submit" button, which likely 

triggers the machine learning model to analyze the data and generate a 

Temperature prediction. This could be particularly useful for weather 

analysts, researchers, and individuals who need real-time climate 

predictions for planning and decisionmaking. 

                 
Fig: 6.3 Cloud Climate Prediction for Precipitation  

 The application shows to be designed for cloud climate prediction, 

specifically for inputting data related to precipitation.The webpage has 

a clean and simple layout with a centered form. The form consists of 

three labeled input fields: 1. Cloud cover – Likely meant to input data 

about the extent of cloud coverage. 2. Humidity – For entering the 

humidity level. 3. Pressure levels – For inputting atmospheric pressure 

data. At the bottom of the form, there is a blue "Submit" button for 

submitting the entered data. 

                

Fig: 6.4 Cloud Climate Prediction for Air Quality  

The application is focused on cloud climate prediction, specifically for 

assessing air quality.At the top, the page has a heading that reads 

"Cloud Climate Prediction - Input Data". The form consists of three 

labeled input fields: 1. Pollutants level –To input the concentration of 

pollutants in the air. 2. Wind direction – For specifying the direction of 

the wind, which can affect air quality. 3. Temperature – For entering 
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the current temperature, which influences atmospheric conditions. At 

the bottom of the form, there is a blue "Submit" button for submitting 

the entered data. 

 

5. CONCLUSION 

AWS's implementation of machine learning to classify clouds from 

satellite data presents a significant advancement in process-oriented 

climate model assessment. By leveraging cloud computing, this 

approach enhances scalability, efficiency, and accessibility for climate 

researchers and meteorologists. The integration of AWS services such 

as Amazon SageMaker, AWS Lambda, and Amazon S3—facilitates 

real-time data processing, model training, and inference at a global 

scale.This innovative solution enables more accurate cloud 

classification, improving climate models and supporting better 

predictions of weather patterns and climate change impacts. Moreover, 

the flexibility of AWS cloud computing ensures cost-effective and 

secure deployment of machine learning workflows, fostering 

collaboration among scientific communities. As the technology 

evolves, continued enhancements in AI models and cloud 

infrastructure will further refine climate assessments, contributing to 

more sustainable and data-driven decision-making in climate research. 
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